Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2846541.v1

ABSTRACT

Neutralization of Omicron subvariants by different bivalent vaccines have not been well evaluated. This study characterized neutralization against Omicron subvariants in 98 individuals receiving dialysis or with a kidney transplant receiving the BNT162b2 (BA.4/BA.5) or mRNA-1273 (BA.1) bivalent COVID-19 vaccine. Neutralization against Omicron BA.1, BA.5, BQ.1.1, and XBB.1.5 increased by 8-fold one month following bivalent vaccination. In comparison to wild-type (D614G), neutralizing antibodies against Omicron-specific variants were 7.3-fold lower against BA.1, 8.3-fold lower against BA.5, 45.8-fold lower against BQ.1.1, and 48.2-fold lower against XBB.1.5. Viral neutralization was not significantly different by bivalent vaccine type for wild-type (D614G) (P=0.48), BA.1 (P=0.21), BA.5 (P=0.07), BQ.1.1 (P=0.10), nor XBB.1.5 (P=0.10). Hybrid immunity conferred higher neutralizing antibodies against all Omicron subvariants. Given that both BNT162b2 (BA.4/BA.5) and mRNA-1273 (BA.1) induced similar neutralization against all Omicron subvariants, this suggests that bivalent vaccines confer protection even when they are antigenically divergent from the circulating variant.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.18.476864

ABSTRACT

Cellular-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 SARS-CoV-2-infected survivors over a one year post symptom onset (PSO) interval by ex vivo cytokine ELISpot assay. All subjects demonstrated SARS-CoV-2-specific IFN-{gamma}, IL-2, and Granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (Nucleocapsid, Membrane, Spike) except Envelope, with GzmB > IL-2 > IFN-{gamma}. Mathematical modeling predicted that: 1) cytokine responses peaked at 6 days for IFN-{gamma}, 36 days for IL-2, and 7 days for GzmB, 2) severe illness was associated with reduced IFN-{gamma} and GzmB, but increased IL-2 production rates, 3) males displayed greater production of IFN-{gamma}, whereas females produced more GzmB. Ex vivo responses declined over time with persistence of IL-2 in 86% and of IFN-{gamma} and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modelled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the Nucleocapsid and Membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent.


Subject(s)
Severe Acute Respiratory Syndrome , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL